BI-015 a novel diagnostic and prognostic prostate cancer biomarker that buffers the translational burden of neoplastic transformation
Year: 2013
Session type: Poster / e-Poster / Silent Theatre session
Background
The molecular background that determines a patient's ability to respond positively to differing treatment regimes is driving translational research to develop new biomarkers for prostate cancer. Cell transformation introduces new metabolic and translational pressures that the cell must overcome to survive. Excessive levels of new proteins, that would otherwise be toxic to the cell, are processed by inducing the stress response pathway, autophagy or secretion. Here we present the 350 kDa BI-015 protein as a novel regulator of protein translation and secretion that acts as a predictive and diagnostic biomarker of the disease.
Method
BI-015 expression was quantified using immunohistochemistry in three independent tissue microarrays, with extensive clinical follow up. A stably transfected LNCaP cell line with attenuated BI-015 expression was generated to elucidate the function of the protein. Network analysis revealed an association of BI-015 with c-myc driven pathways that regulate translation (mTOR, EIFE) and aminoacyl-tRNA biosynthesis.
Results
BI-015 was expressed in the luminal epithelial cells of prostate tumours but was absent in benign tissue. BI-015 expression predicted patient outcome, with high expression doubling the likelihood of recurrence within 5 years following radical prostectomy (HR=2.2, p value=0.01). In human tissue and LNCaP cells BI-015 localised to distinct vesicle structures, suggesting a role in vesicle transport. BI-015 positive vesicles colocalised with components of the Golgi apparatus and fused with lysosomes in a calcium dependent manner. Cells with reduced BI-015 expression showed lower rates of protein translation and secretion of PSA.
Conclusion
BI-015 is a novel predictive and diagnostic biomarker of prostate cancer that regulates protein translation and secretion of PSA. Therapeutic targeting of BI-015 in cancer may prevent cells overcoming the burden of increasing translation with neoplastic transformation, and result in cell death.